NASA Explores Upper Limits of Global Navigation Systems for Artemis

The Artemis generation of lunar explorers will establish a sustained human presence on the Moon, prospecting for resources, making revolutionary discoveries, and proving technologies key to future deep space exploration.

To support these ambitions, NASA navigation engineers from the Space Communications and Navigation (SCaN) program are developing a navigation architecture that will provide accurate and robust Position, Navigation, and Timing (PNT) services for the Artemis missions. Global Navigation Satellite System (GNSS) signals will be one component of that architecture. GNSS use in high-Earth orbit and in lunar space will improve timing, enable precise and responsive maneuvers, reduce costs, and even allow for autonomous, onboard orbit and trajectory determination.

Global Navigation Satellite System

GNSS refers to PNT satellite constellations operated by the U.S., the European Union, Russia, China, India, and Japan. GPS, the PNT constellation created by the U.S. Air Force, is probably the example most Americans are familiar with.

On Earth, GNSS signals enable navigation and provide precise timing in critical applications like banking, financial transactions, power grids, cellular networks, telecommunications, and more. In space, spacecraft can use these signals to determine their location, velocity, and time, which is critical to mission operations.

“We’re expanding the ways we use GNSS signals in space,” said SCaN Deputy Director for Policy and Strategic Communications J.J. Miller, who coordinates PNT activities across the agency. “This will empower NASA as the agency plans human exploration of the Moon as part of the Artemis program.”

Spacecraft near Earth have long relied on GNSS signals for PNT data. Spacecraft in low-Earth orbit below about 1,800 miles (3,000 km) in altitude can calculate their location using GNSS signals just as users on the ground might use their phones to navigate.

This provides enormous benefits to these missions, allowing many satellites the autonomy to react and respond to unforeseen events in real time, ensuring the safety of the mission. GNSS receivers can also negate the need for an expensive onboard clock and simplifies ground operations, both of which can save missions money. Additionally, GNSS accuracy can help missions take precise measurements from space.

LOGIN or SUBSCRIBE

Enter you REGISTERED email

Aerospace Tech Review Magazine - Subscription Popup

Already a subscriber? Log in